

NAE Practices for Engineering Education and Research (PEER) Program Guidance Group

# Major Shifts in Engineering Education



August 14, 2024

## Karl A. Smith





He pronouns

## **Shifts in Engineering Education**

- What were/are they?
- What did we learn/are we learning about advancing engineering education?
- What are the implications for the future of engineering education?

## **Prior Shifts**



Engineering science

| l | ~~ • | $\equiv$ |  |
|---|------|----------|--|
|   |      |          |  |

Outcomes and accreditation



Engineering design



Social-behavioral sciences



ICC technologies

#### Five Major Shifts in 100 Years of Engineering Education

By Jeffrey E. Froyd, Fellow IEEE, Phillip C. Wankat, and Karl A. Smith

http://ieeexplore.ieee.org/xpl/articleDetails.jsp? reload=true&tp=&arnumber=6185632

## **Engineering Science and Analytical Emphasis**





# Theory and research matter.

## **Outcomes-based Education and Accreditation**



**IMPLICATION:** 

Identifying and articulating enduring outcomes is a critical part of effective course design.

See: Streveler & Smith (2020)

## **Learning and Development Outcomes UMN**



https://slo.umn.edu

## **Emphasis on Engineering Design**





Embracing the engineering design process for course design makes sense.

https://advances.asee.org/opinion-course-design-in-the-time-of-coronavirus-put-on-your-designers-cap/



#### **James Duderstadt**

Nuclear Engineering Professor Former Dean, Provost and President University of Michigan " It could well be that faculty members of the twenty-first century college or university will find it necessary to set aside their roles as teachers and instead become designers of learning experiences, processes, and environments."

## **Education, Learning and Social-Behavioral Sciences**



## **Education, Learning and Social-Behavioral Sciences**





Applying what we know about learning is essential:

**Cognitive Domain** 

## Learning Requires...



## I-C-A-P Framework

| Interactive                                                  | > Constructive                                          | > Attentive<br>(Active)    | > Passive |
|--------------------------------------------------------------|---------------------------------------------------------|----------------------------|-----------|
| Substantive dialogue<br>on the same topic,<br>not ignoring a | Producing outcomes that go beyond presented information | Doing something physically |           |
| partner's contribution                                       | <b>1</b>                                                | Paying attention           |           |
| Guided-construction                                          | Self-construction                                       | Engaging activities        |           |
| Joint creation processes                                     | Creation processes                                      | Attending processes        |           |

## **Interactive Learning**

#### **Reduces Failure Rates**

#### Narrows Achievement Gap





See: Freeman, et.al. (2014)

## **Education, Learning and Social-Behavioral Sciences**

**Psychological** 

Safety



#### **IMPLICATIONS:**

Applying what we know about learning is essential:

**Affective Domain** 

Personal and Academic Support

## **Student Support is Essential**

#### **Academic Support**

Classmates and faculty:

Help students succeed academically.

**Personal Support** 

Classmates and faculty:

Care about and are personally committed to the **well-being** of each student.

The greater the social support, the greater the academic challenges may be.

See: Johnson, Johnson and Smith (2006)

https://advances.asee.org/aee-covid-19-home-page/

**Creative Tension Between Challenge and Security** 

#### **ACCOUNTABILITY FOR MEETING DEMANDING GOALS**

|        |      | LOW                                                                                                                       | HIGH                                                                                          |
|--------|------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|        |      | Comfort Zone                                                                                                              | Learning Zone                                                                                 |
|        | HOIH | People really enjoy working with one<br>another but don't fell particularly<br>challenged. Nor do they work very<br>hard. | The focus is on collaboration and learning<br>in the service of high-performance<br>outcomes. |
| 50     |      | Apathy Zone                                                                                                               | Anxiety Zone                                                                                  |
| PSYCHO | ΓΟΜ  | People tend to be apathetic and spend their time jockeying for position.                                                  | People fear to offer tentative ideas, try new things, or ask colleagues for help              |

See: Edmonson (2008)

See also: Pelz and Andrews (1966); Pelz (1976)

## Integration of Information, Communication, and Computational (ICC) Technologies

DELIVERY: Television, Audio & Video Tape & Internet

Personal Response Systems (clickers)

> Computational Technologies

**Simulations** 

Individualized Feedback

**Intelligent Tutors** 

Grading

Games and Competitions



Technology provides affordances to mediate learning—but education is a human activity.

## Elements of a paradigm shift in engineering education

|                           | Older paradigm                                      | Newer paradigm                                                        |  |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|--|
| Knowledge                 | Transferred from faculty to students                | Jointly constructed by students and faculty                           |  |
| Students                  | Passive vessels to be filled by faculty's knowledge | Active constructors,<br>discoverers, and transformers<br>of knowledge |  |
| Faculty purpose           | Classify and sort students                          | Develop students'<br>competencies and talents                         |  |
| Context                   | Competitive /individualistic                        | Cooperative                                                           |  |
| Climate                   | Conformity                                          | Diversity                                                             |  |
| Assumption about teaching | Any expert can teach                                | Teaching is complex and requires considerable training                |  |

Johnson, Johnson & Smith (1991, 2006); Smith & Waller (1997); Smith & Felder (2023)

## **Prior Shifts**

- Were prompted by outside forces
- Were met with resistance
- Were eventually embraced (to varying degrees)
- Did not change core values/practices

#### **Engineering Education Reports**

| Mann Report    | Wickenden Report |
|----------------|------------------|
| (1918)         | (1930)           |
| Hammond Report | Grinter Report   |
| (1940)         | (1955)           |
| "Goals" Report | Green Report     |
| (1968)         | (1994)           |
| Innovation     | Educating the    |
| with Impact    | Engineer of 2020 |
| (2002)         | (2005)           |

#### Œ

THE CARNEGIE FOUNDATION FOR THE ADVANCEMENT OF TEACHING

PREPARATION FOR THE PROFESSIONS



#### EDUCATING Engineers

Designing for the Future of the Field

Sheri D. Sheppard Kelly Macatangay Anne Colby William M. Sullivan Sullivan (2005) – The Three Apprenticeships of Professional Education

- 1. Head intellectual/cognitive development
- 2. Hand tacit body of skills shared by competent practitioners
- 3. Heart ways of thinking and habits of mind, including the values and attitudes shared by the professional community

## **Ubiquitous Remote Teaching and Learning**

# Emergency Remote Teaching

## **Effective Distance Education**



Engineering teaching and learning can be accomplished remotely—but there are challenges:

- Video conference fatigue
- Lack of human/social interaction

## **Emphasis on Justice, Equity, Diversity, and Inclusion**





Working towards creating and maintaining equitable and inclusive learning environments is imperative.

https://www.celt.iastate.edu/wp-content/uploads/2020/06/Equity-and-Inclusion-in-the-Online-Learning-Environment.pdf

## Shifts in Engineering Education: Implications

| Engineering<br>Science      | Outcomes<br>Accreditation                                                                                       | Engineering<br>Design                                                               | Social<br>Sciences                                                                                  | ICC<br>Technologies                                                                                      | Remote<br>Learning                                                                                         | Justice,<br>Equity, D&I                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Theory and research matter. | Identifying and<br>articulating<br>enduring<br>outcomes is a<br>critical part of<br>effective course<br>design. | Embracing the<br>engineering<br>design process<br>for course design<br>makes sense. | Applying what we<br>know about<br>learning is<br>essential:<br>Cognitive Domain<br>Affective Domain | Technology<br>provides<br>affordances to<br>mediate<br>learning—but<br>education is a<br>human activity. | Engineering<br>teaching and<br>learning can be<br>accomplished<br>remotely—but<br>there are<br>challenges. | Working towards<br>creating and<br>maintaining<br>equitable and<br>inclusive learning<br>environments is<br>imperative. |
|                             | PR                                                                                                              | RIOR SHIF                                                                           | TS                                                                                                  |                                                                                                          | EMERGIN                                                                                                    | G SHIFTS                                                                                                                |

## **Prior Shifts**

- Were prompted by outside forces
- Were met with resistance
- Were eventually embraced (to varying degrees)
- Did not change core values/practices

## **Post-Pandemic**



### What do we want to keep?

## **Pandemics**

- 1. Accelerate us into the future and magnify trends
- 2. Reveal inequities and dysfunctions in existing systems
- 3. Bring renewed attention to public & personal health
- 4. Create opportunities for those who grasp the change



#### The impact on education





## Thank you!



/karl-smith-5581401





karlsmithmn.org

## References

Chi, M.T.H. (2009). Active-Constructive-Interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73-105

Edmonson, A.C. (2008). The competitive imperative of learning. Harvard Business Review 86 (7/8): 60-67.

Fisher, T. (2022). Space, structures and design in a post-pandemic world. New York: Routledge.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. <u>https://www.pnas.org/content/111/23/8410</u>

Froyd, J. E., Wankat, P. C., & Smith, K. A. (2012). Five major shifts in 100 years of engineering education. *Proceedings of the IEEE, 100,* 1344–1360.

Johnson, David W., Johnson, Roger T. and Smith, Karl A. (2006). Active learning: Cooperation in the college classroom, 3rd Ed. Edina, MN: Interaction Book.

- Pelz, Donald, and Andrews, Frank. (1966). Scientists in Organizations: Productive Climates for Research and Development. Ann Arbor: Institute for Social Research, University of Michigan.
- Pelz, Donald. (1976). Environments for creative performance within universities. In Samuel Messick (Ed.), Individuality in learning, pp. 229-247. San Francisco: Jossey-Bass

Sheppard, S.D., Macatangay, K., Colby, A., & Sullivan, W.M. (2008). Educating engineers: Designing for the future of the field. San Francisco: Jossey-Bass.

Smith, K.A. & Felder, R.M. (2023). Cooperative Learning in Engineering Education: The Story of an Ongoing Uphill Climb. In Robyn Gillies, Barbara Millis, and Neil Davidson, eds. <u>Contemporary Global Perspectives on Cooperative Learning Draft</u>

Smith, K., & Waller, A. (1997). Afterword: New paradigms of college teaching. In W. Campbell and K. Smith (Eds.), New paradigms for college teaching, Edina, MN: Interaction Book Co.

Sullivan, W.M. (2005). Work and integrity: The crisis and promise of professionalism in America. San Francisco: Jossey-Bass.

- Streveler R., and Smith K. (2020), Course design in the time of coronavirus: Put on your designer's CAP. Advances in Engineering Education. <u>https://advances.asee.org/opinion-course-design-in-the-time-of-coronavirus-put-on-your-designers-cap/</u>
- Theobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., ... & Freeman, S. (2020). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proceedings of the National Academy of Sciences, 117(12), 6476-6483. https://www.pnas.org/content/117/12/6476