

SASEE WEBINAR

Learning in the Time of Coronavirus

March 30, 2021

1:00 – 2:00 PM, ET

Upcoming Webinars

Writing Effective COVID Impact Statements: Emerging Insights And Best Practices

> April 26, 2021 2:00 – 3:00 PM, ET

Safe Zone Ally Training: Level 1

May 4, 2021

2:00 – 3:30 PM, ET

Safe Zone Ally Training: Level 2

May 11, 2021 2:00 – 3:00 PM, ET

resources.asee.org/course-catalog

Today's Facilitators

Karl A. Smith

He pronouns

Rocío Chavela Guerra

She pronouns

Poll: Please select your current role.

Faculty	(29/48) 60%
Staff	(8/48) 17%
Student	(0/48) 0%
Administrator	(7/48) 15%
Advisor	(1/48) 2%
Other (tell us in the chat)	(6/48) 13%

The Time of Coronavirus

Shifts in Engineering Education

- What were/are they?
- What did we learn/are learning about advancing engineering education?
- What are the implications for learning in the time of coronavirus?

Prior Shifts

Engineering science

Outcomes and accreditation

Engineering design

Social-behavioral sciences

Information, communication, & computational technologies

Emerging Shifts

Ubiquitous remote T&L

Justice, equity, diversity, and inclusion (JEDI)

Poll: What is your approach to teaching and learning during the pandemic?

Remote synchronous (live/real time)	(24) 53%
Asynchronous/self-paced	(2) 4%
Hybrid/blended	(18) 40 %
In person	(1) 2%

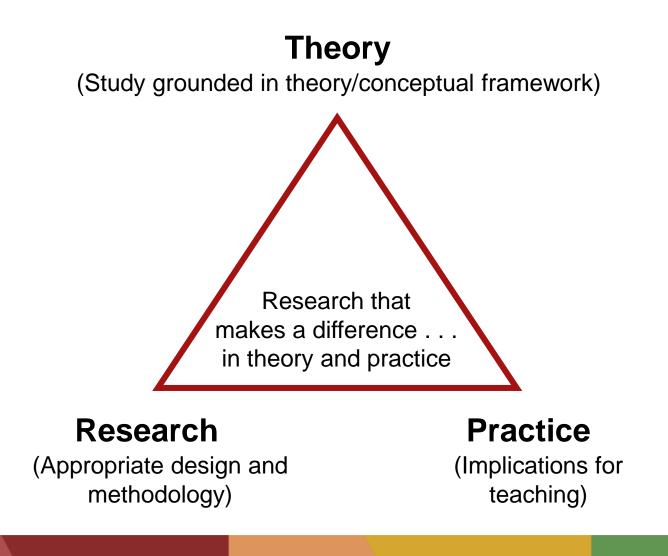
Prior Shifts

Engineering science

Outcomes and accreditation

Engineering design

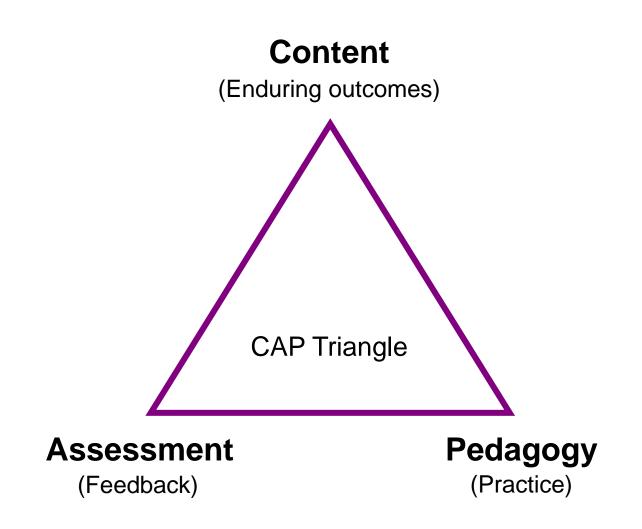
Social-behavioral sciences


ICC technologies

Five Major Shifts in 100 Years of Engineering Education

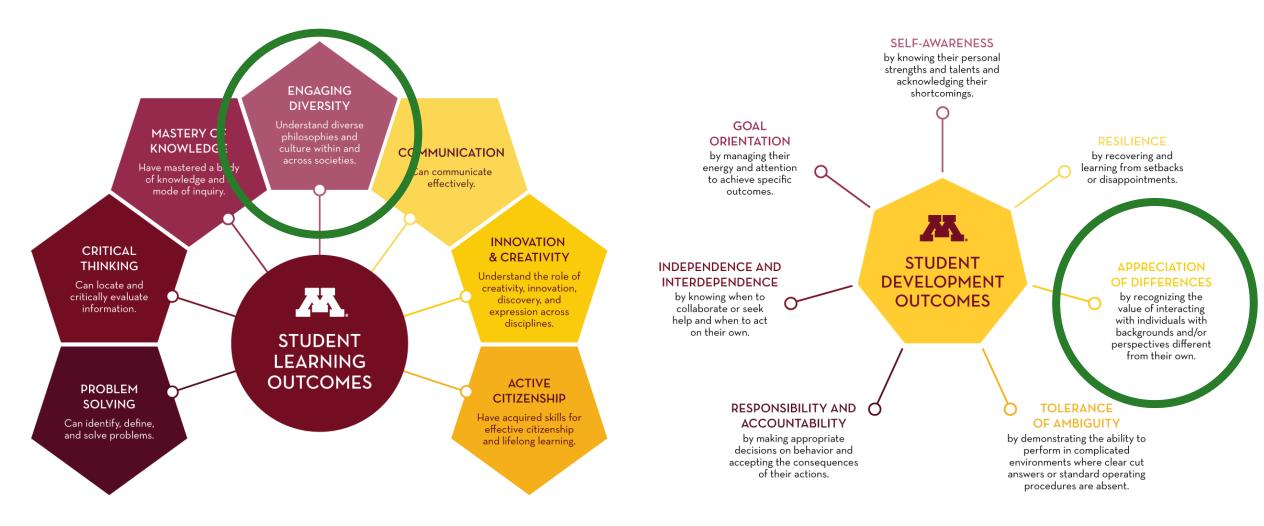
By Jeffrey E. Froyd, Fellow IEEE, Phillip C. Wankat, and Karl A. Smith

http://ieeexplore.ieee.org/xpl/articleDetails.jsp? reload=true&tp=&arnumber=6185632


Engineering Science and Analytical Emphasis

Theory and research matter.

Outcomes-based Education and Accreditation



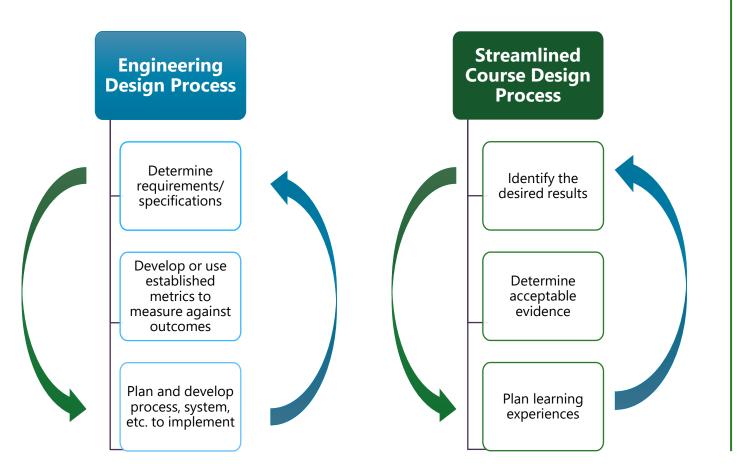
IMPLICATION:

Identifying and articulating enduring outcomes is a critical part of effective course design.

See: Streveler & Smith (2020)

Learning and Development Outcomes UMN

https://slo.umn.edu

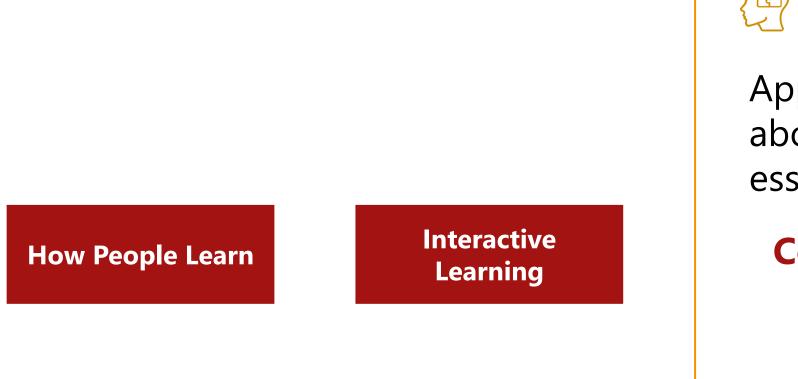

Activity: What have you done to embrace diversity and make learning environments more welcoming and inclusive?

Share in the Chat (optional)

Emphasis on Engineering Design

Embracing the engineering design process for course design makes sense.

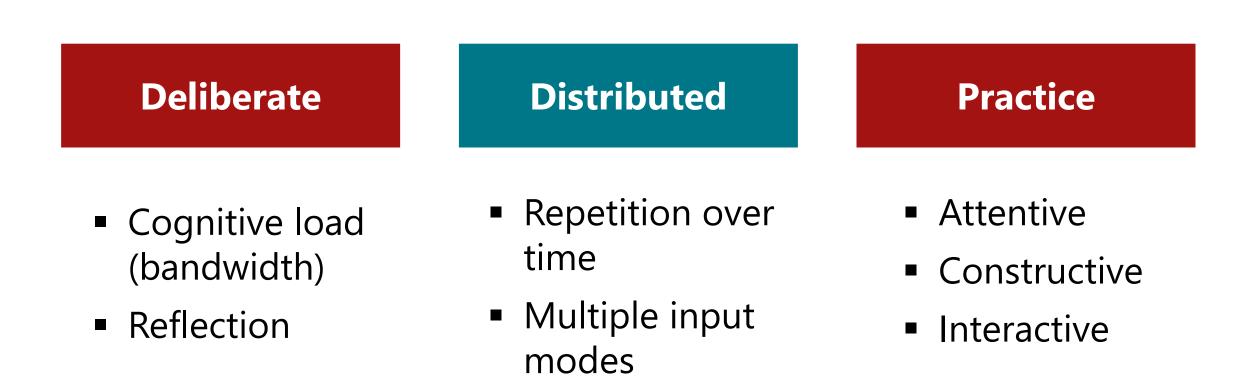

https://advances.asee.org/opinion-course-design-in-the-time-of-coronavirus-put-on-your-designers-cap/


James Duderstadt

Nuclear Engineering Professor Former Dean, Provost and President University of Michigan " It could well be that faculty members of the twenty-first century college or university will find it necessary to set aside their roles as teachers and instead become designers of learning experiences, processes, and environments."

Education, Learning and Social-Behavioral Sciences

Education, Learning and Social-Behavioral Sciences

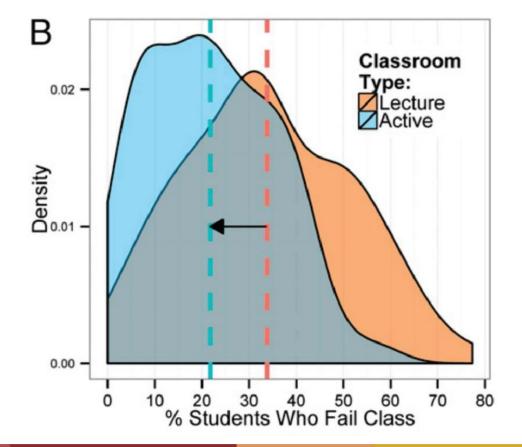


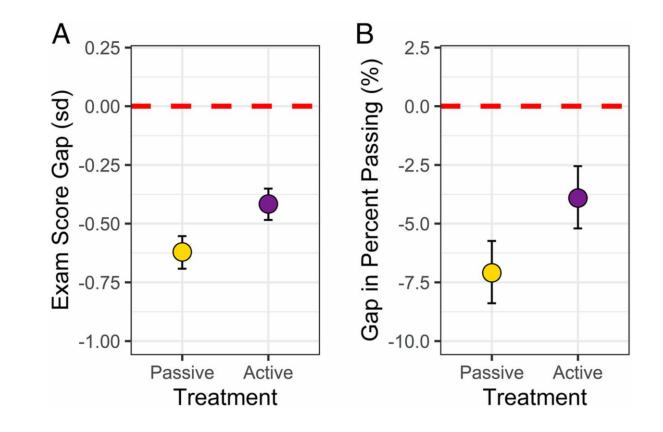
IMPLICATIONS:

Applying what we know about learning is essential:

Cognitive Domain

Learning Requires...


I-C-A-P Framework


Interactive	> Constructive	> Attentive (Active)	> Passive
Substantive dialogue on the same topic, not ignoring a	Producing outcomes that go beyond presented information	Doing something physically	
partner's contribution		Paying attention	
Guided-construction	Self-construction	Engaging activities	
Joint creation processes	Creation processes	Attending processes	

Interactive Learning

Reduces Failure Rates

Narrows Achievement Gap

Activity: How are you incorporating (or planning to incorporate) interactive learning in your classroom?

Share in the Chat (optional)

Education, Learning and Social-Behavioral Sciences

IMPLICATIONS:

Applying what we know about learning is essential:

Affective Domain

Psychological Safety

Personal and Academic Support

Student Support is Essential

Academic Support

Classmates and faculty:

Help students succeed academically.

Personal Support

Classmates and faculty:

Care about and are personally committed to the **well-being** of each student.

The greater the social support, the greater the academic challenges may be.

See: Johnson, Johnson and Smith (2006)

https://advances.asee.org/aee-covid-19-home-page/

Creative Tension Between Challenge and Security

ACCOUNTABILITY FOR MEETING DEMANDING GOALS

		LOW	HIGH
ETY		Comfort Zone	Learning Zone
ICAL SAFETY	HOIH	People really enjoy working with one another but don't fell particularly challenged. Nor do they work very hard.	The focus is on collaboration and learning in the service of high-performance outcomes.
D O		Apathy Zone	Anxiety Zone
PSYCHOLOG	LOW	People tend to be apathetic and spend their time jockeying for position.	People fear to offer tentative ideas, try new things, or ask colleagues for help

See: Edmonson (2008)

See also: Pelz and Andrews (1966); Pelz (1976)

Integration of Information, Communication, and Computational (ICC) Technologies

DELIVERY: Television, Video Tape & Internet

Personal Response Systems (clickers)

> Computational Technologies

Simulations

Individualized Feedback

Intelligent Tutors

Grading

Games and Competitions

Technology provides affordances to mediate learning—but education is a human activity.

Prior Shifts

- Were prompted by outside forces
- Were met with resistance
- Were eventually embraced (to varying degrees)
- Did not change core values/practices

Engineering Education Reports

Mann Report	Wickenden Report	
(1918)	(1930)	
Hammond Report	Grinter Report	
(1940)	(1955)	
"Goals" Report	Green Report	
(1968)	(1994)	
Innovation	Educating the	
with Impact	Engineer of 2020	
(2002)	(2005)	

Poll: How is remote teaching/learning going (compared to pre-pandemic)?

Much better than before	(5/47) 11%
Better than before	(16/47) 34%
About the same as before	(13/47) 28%
Worse than before	(13/47) 28%
Much worse than before	(3/47) 6%

Ubiquitous Remote Teaching and Learning

Emergency Remote Teaching

Effective Distance Education

Engineering teaching and learning can be accomplished remotely—but there are challenges:

- Video conference fatigue
- Lack of human/social interaction

Videoconference (Zoom) Fatigue

Close-up eye contact is intense

• Take Zoom out of full-screen mode

• Stir far away from the screen

Seeing your face all the time is exhausting

• Hide yourself from view.

Sitting still and talking is unnatural

- Create more space between yourself and the camera (e.g., get a keyboard).
- Turn off the camera

Cognitive load is at maximum

- Turn off the camera—give yourself an audio-only break.
- Turn your entire body away from the screen.

Lack of human/social interaction:

"Higher levels of **group belongingness** are the most consistent protective factor against videoconference fatigue."

https://digitalcommons.odu.edu/management_fac_pubs/38

Emphasis on Justice, Equity, Diversity, and Inclusion

MPLICATION:

Working towards creating and maintaining equitable and inclusive learning environments is imperative.

Be Proactive (Remote Learning)

- Pay attention to warning signs and reach out.
- Use formative assessment and make completion required.
- Know what resources are available.
- Prepare students for varying delivery modes.

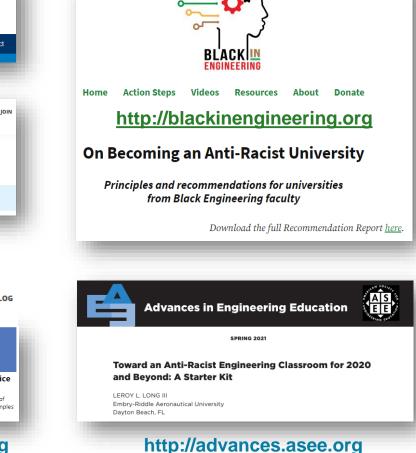
Become an Ally

Apathetic

Not understanding of the issues

Aware

Knows basic concepts, not active


Active

Well-informed, sharing & seeking when prompted

Advocate

Committed proactive champion

	rsityrecognitic	gram (ADRP) on.asee.org
Home Background Application	n Process Resources Recognized In	stitutions FAQ News Contact
SASEE Commission of Equity, and Inc	n Diversity, about awards c Jusion	ALL FOR PROGRAMMING RESOURCES JOIN
	WORK	SHOPS
You Follow our YouTube play	list!	
_	sity.asee.org/d	<u>eicommittee</u>
http://divers		eicommittee course catalog
http://divers	sity.asee.org/d	

Shifts in Engineering Education: Implications

Engineering Science	Outcomes Accreditation	Engineering Design	Social Sciences	ICC Technologies	Remote Learning	Justice, Equity, D&I
Theory and research matter.	Identifying and articulating enduring outcomes is a critical part of effective course design.	Embracing the engineering design process for course design makes sense.	Applying what we know about learning is essential: Cognitive Domain Affective Domain	Technology provides affordances to mediate learning—but education is a human activity.	Engineering teaching and learning can be accomplished remotely—but there are challenges.	Working towards creating and maintaining equitable and inclusive learning environments is imperative.
PRIOR SHIFTS					EMERGIN	G SHIFTS

Prior Shifts

- Were prompted by outside forces
- Were met with resistance
- Were eventually embraced (to varying degrees)
- Did not change core values/practices

Post-Pandemic

What do we want to keep?

Thank you!

SEE AMERICAN SOCIETY FOR ENGINEERING EDUCATION

/karl-smith-5581401 /rocio-chavela

References

Chi, M.T.H. (2009). Active-Constructive-Interactive: A conceptual framework for differentiating learning activities. *Topics in Cognitive Science*, *1*, 73-105

Edmonson, A.C. 2008. The competitive imperative of learning. Harvard Business Review 86 (7/8): 60-67.

- Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. <u>https://www.pnas.org/content/111/23/8410</u>
- Johnson, David W., Johnson, Roger T. and Smith, Karl A. 2006. Active learning: Cooperation in the college classroom, 3rd Ed. Edina, MN: Interaction Book.
- Pelz, Donald, and Andrews, Frank. 1966. Scientists in Organizations: Productive Climates for Research and Development. Ann Arbor: Institute for Social Research, University of Michigan.
- Pelz, Donald. 1976. Environments for creative performance within universities. In Samuel Messick (Ed.), Individuality in learning, pp. 229-247. San Francisco: Jossey-Bass
- Streveler R., and Smith K. (2020), Course design in the time of coronavirus: Put on your designer's CAP. Advances in Engineering Education. <u>https://advances.asee.org/opinion-course-design-in-the-time-of-coronavirus-put-on-your-designers-cap/</u>
- Theobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., ... & Freeman, S. (2020). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proceedings of the National Academy of Sciences, 117(12), 6476-6483. <u>https://www.pnas.org/content/117/12/6476</u>