Fundamentals of Engineering Education Research

Rigorous Research in Engineering Education Initiative (NSF DUE 0817461) https://stemedhub.org/groups/cleerhub

Texas State University - San Marcos - June 7, 2017

Ruth A.Streveler Purdue University

Karl A. Smith Purdue University and University of Minnesota

Overview

What are we going to do?

• Welcome and introductions

• Topics of the workshop

- Background and context
- Features of engineering education research
- Research questions and methodologies
- Print and online resources
- Global communities and their networks

• Format of the workshop

- Interactive and team-based work

Engineering Education Research and/or Innovation STORY

- When and how did you become interested in engineering education research and/or innovation?
- Was there a critical incident or memorable event associated with your initial interest?

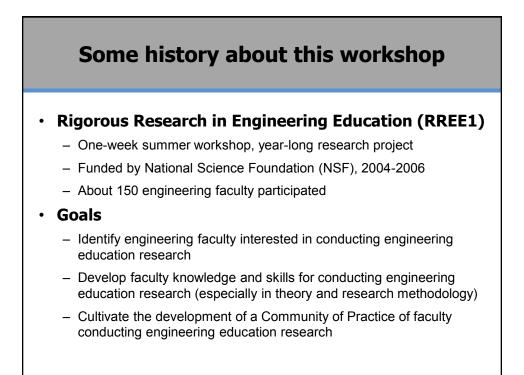
Workshop frame of reference

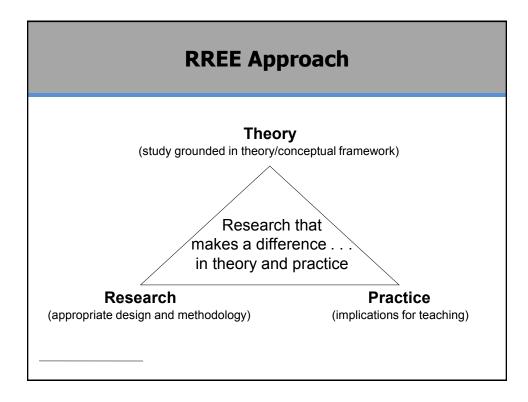
• Workshop is about

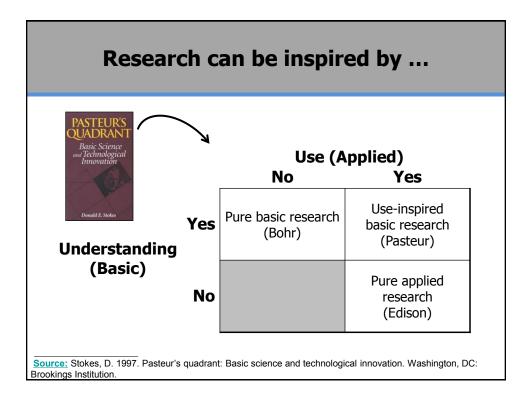
- Identifying faculty interested in engineering education research
- Deepening understanding of engineering education research
- Building engineering education research capabilities

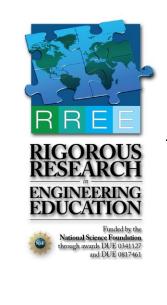
Workshop is NOT about

- Pedagogical practice, i.e., "how to teach"
- Convincing you that good teaching is important
- Writing engineering education research grant proposals or papers
- Advocating all faculty be engineering education researchers

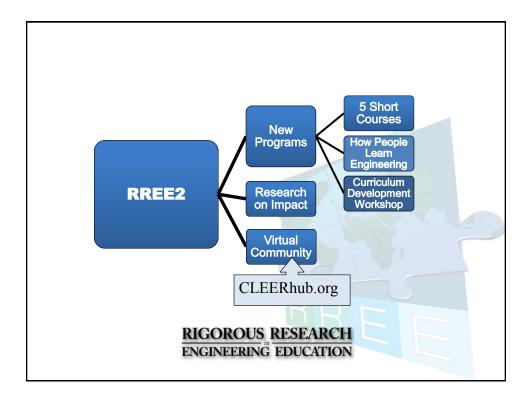

Levels of inquiry in engineering education


- Level 0 Teacher
 - Teach as taught
- Level 1 Effective Teacher
 - Teach using accepted teaching theories and practices
- Level 2 Scholarly Teacher
 - Assesses performance and makes improvements
- Level 3 Scholar of Teaching and Learning
 - Engages in educational experimentation, shares results
- Level 4 Engineering Education Researcher
 - Conducts educational research, publishes archival papers


Source: Streveler, R., Borrego, M. and Smith, K.A. 2007. Moving from the "Scholarship of Teaching and Learning" to "Educational Research:" An Example from Engineering. *Improve the Academy*, Vol. 25, 139-149.

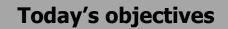

Workshop Intentions / Participant Learning Outcomes

- 1. Describe key features of engineering education research
- 2. Explain emergence of engineering education research as a discipline
- 3. Describe recent reports and their relevance for and relationship with engineering education research
- 4. Summarize growth of engineering education research
- 5. Speculate on the future of engineering education research



Expanding and sustaining research capacity in engineering and technology education: Building on successful programs for faculty and graduate students

Collaborative partners: Purdue (lead), Alverno College, Colorado School of Mines, Howard University, Madison Area Technical College, National Academy of Engineering



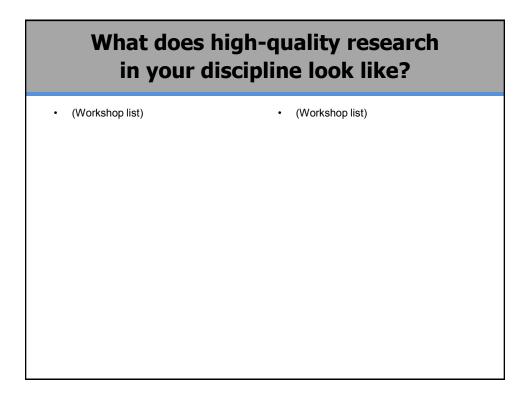
RREE<u>2</u>

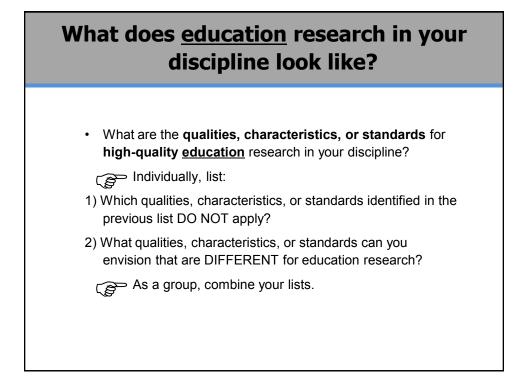
Follow-up proposal (RREE2)

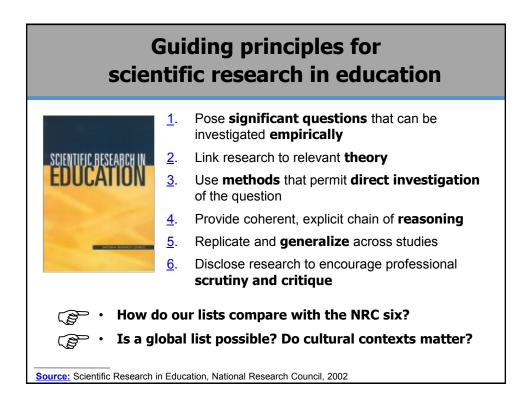
- Includes a series of 5 short courses*
 - Fundamentals of Engineering Education Research
 - Selecting Conceptual Frameworks
 - Understanding Qualitative Research
 - Designing Your Research Study
 - Collaborating with Learning and Social Scientists

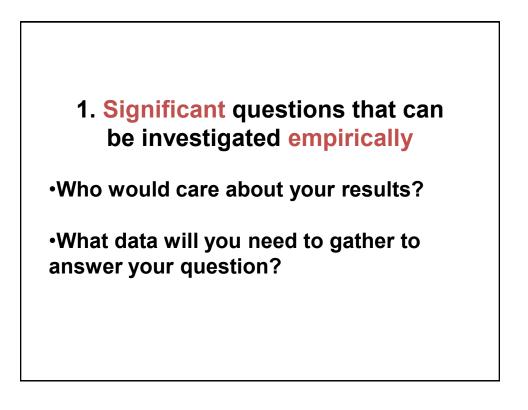
*Recorded and posted on https://stemedhub.org/groups/cleerhub

- Identify principal features of engineering education research
- Frame and situate research questions and methodologies
- Gain familiarity with several print and online resources
- Become aware of global communities and their networks


Objective 1 Identify principal features of engineering education research


What does high-quality research in your discipline look like?

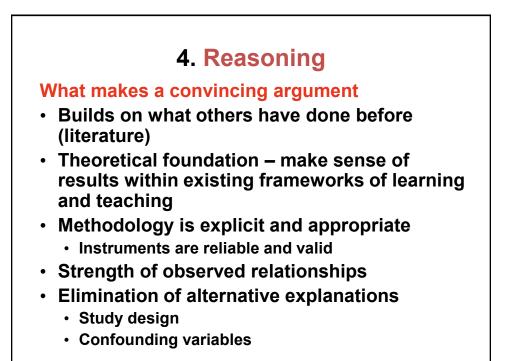

- What are the **qualities**, **characteristics**, **or standards** for **high-quality** research in your discipline?
- Think of it this way: "Research in my field is highquality when...."


Individually, list the qualities, characteristics or standards in your discipline

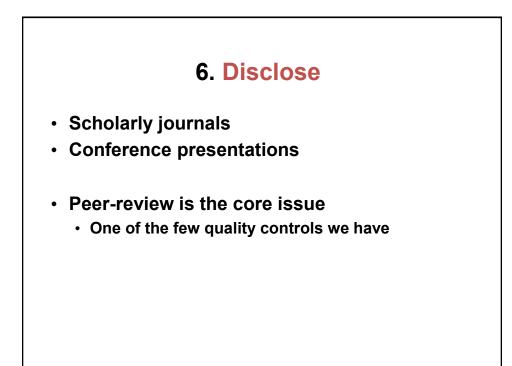
Compare your lists, <u>and as a group</u>, develop a list of high-quality research qualities, characteristics or standards

2. Link research to relevant theory

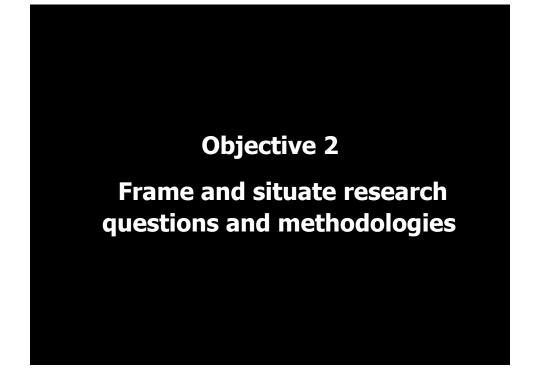
- Learning theories
 - Cognition
 - Novice expert differences
 - Instructional psychology
 - Psychometrics
- Motivational theories
- Moral and ethical development
- Social context of education


3. Methods for direct investigation (examples)

Quantitative methods


- Tests
- Surveys & questionnaires (defined response)
- Faculty or peer ratings

Qualitative methods


- Focus groups
- Interviews
- Observations

Most common frameworks in educational research

- Theories of learning
- Theories of motivation
- Theories of development
- Theories of contextual effects

See Marilla Svinick's Handbook — A Guidebook On Conceptual Frameworks For Research In Engineering Education. https://stemedhub.org/collections/post/254/download/Conceptual_Frameworks_Revised_2010.pdf

Multiple theoretical frameworks

Which comes first: framework or observation?

Can go in either direction

Multiple theoretical frameworks

Going from framework to research question to research study

Framework

Self-determination framework says - students' motivation for a task is affected by the degree of control they have over it.

Therefore

If we manipulate the degree of student control, we should see variations in motivation levels.

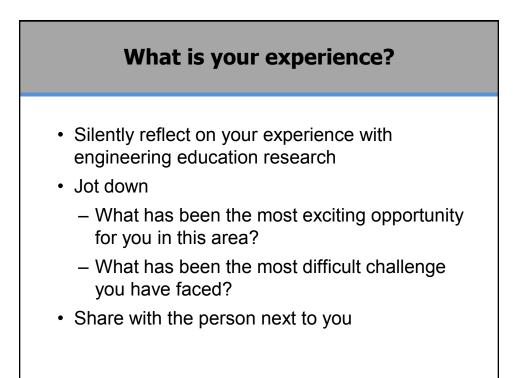
Design

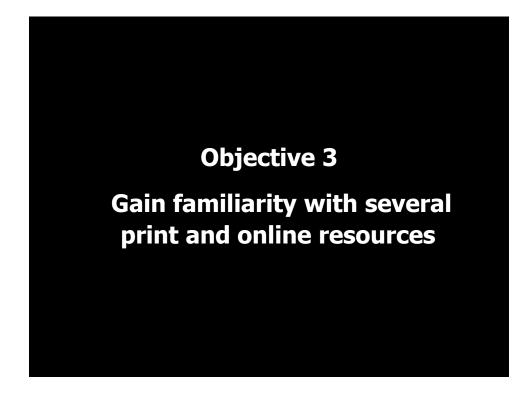
Different groups are given different degrees of control over the topic and process of their project and their motivation for the project is measured at various times throughout the semester.

Multiple theoretical frameworks

Going from observation to framework to research question to research study and back to observation

Observation

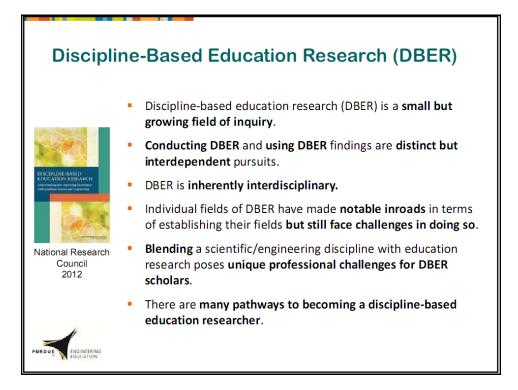

Some students in a class participate more than others.

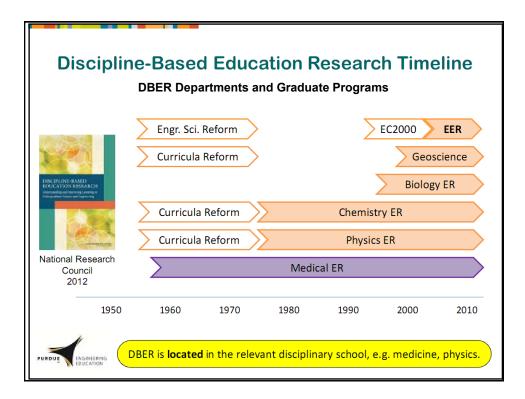

Possible Frameworks

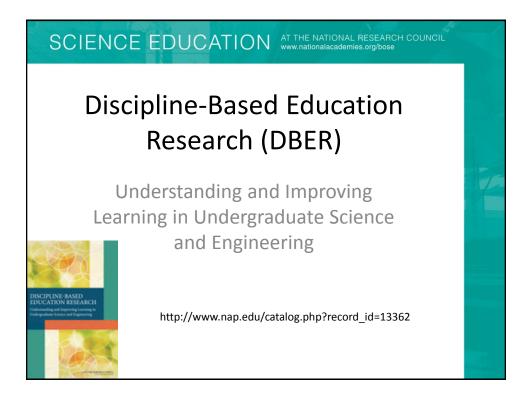
Learning theory: Prior knowledge differences
Motivation theory: Goal orientations, task value, self-efficacy
Contextual variables: Course contingencies; classroom climate

Design possibilities

•Measure and regress level of participation on potential variables. •Manipulate course contingencies or course practices.







ngineering Education	Departments and Programs (Graduate)	(redirected from Engineering-Education-Degree-and-Certificate
st edited by 🎒 Elliot Douglas 2 months, 3 weeks ago		0
Engineering/STEM Education Graduate Engineering Education-Related Certific Imovative Engineering and Inter/Cross Home Engineering/STEM Education	ate Programs - Disoplinary Programs	
Institution	Program	Degrees Awarded
Alcone Sate University	Bar, Lou Faiten Teachen College	Midl. Effections/Technology Ph.D. in Curriculum and Instruction with concentration in Engineering Effection Inservine inde Ph.D. in Educational Technology Ph.D. in Educational Technology with concentration in Arts, Media, and Engineering
	In A. Future School of Engineering	Ph.D. Aeropace Engineering with concentration in Engineering Education Ph.D. Mechanical Engineering with concentration in Engineering Education
University of California - Berkeley	Studies in Engineering. Science and Mathematics (SES-MIE Education	M.A. Technology, Science, or Math Blucation, Ph.D. Technology, Science, or Math Blucation
Chalmers University of Technology (Sweden)	Department of Appled Information Technology	Licentinte Engineering Education Research Ph.D. Engineering Education Research
University of Cincinnati	School of Engineering Education (SEE)	
Clemson University	Department of Engineering and Science Education	Ph.D. Engineering or Science Education
University of Kentucky	College of Education - Department of Science. Technology, Engineering and Mathematics	Ph.D. Science, Technology, Engineering and Mathematics Education
Linköping University (Sweden)	Engineering Education Passaich Group	Ph.D. Engineering Education Pesearch
The College of New Jersey	School of Engineering - Department of Technological Statles	M.A.T. in Secondary Education - Technology Education
Hagara University	College of Education	M.S. Ed. Math. Science and Technology Education
North Carolina State University	College of Education - Department of Klence, Technology, Ingineering, and Mathematics Education	M.S. and M.Ed. Program in Technology Education Ed.D. Program in Technology Education
Old Dominion University	Darden College of Education - Department of STEM Education // Professional Studies	M.S. Engineering - Modeling and Simulation

Seven Recommendations for Innovation with Impact

Who

- 1. Grow professional development in teaching and learning.
- 2. Expand collaborations.

What

3. Expand efforts to make engineering more engaging, relevant, and welcoming.

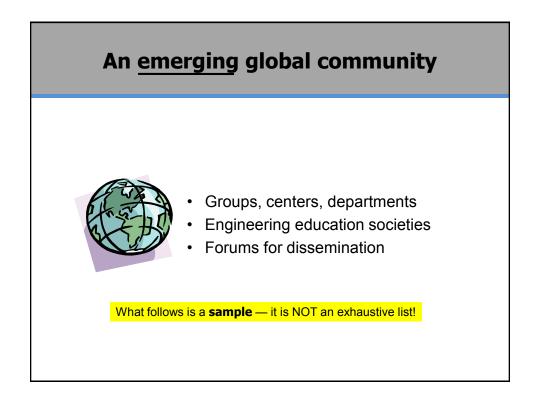
How

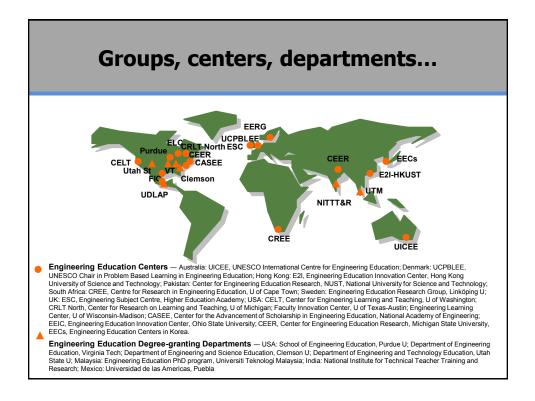
- 4. Increase, leverage, and diversify resources for engineering teaching, learning, and innovation.
- 5. Raise awareness of proven practices and of scholarship in engineering education.

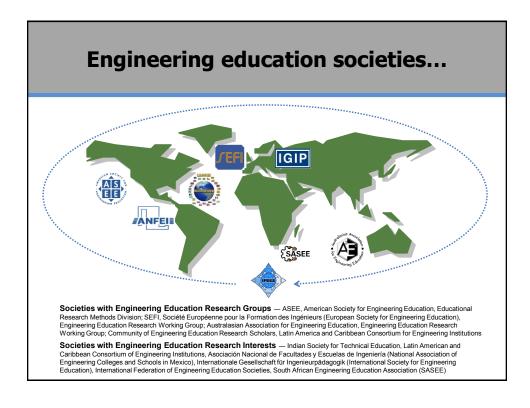
Seven Recommendations for Innovation with Impact (continued)

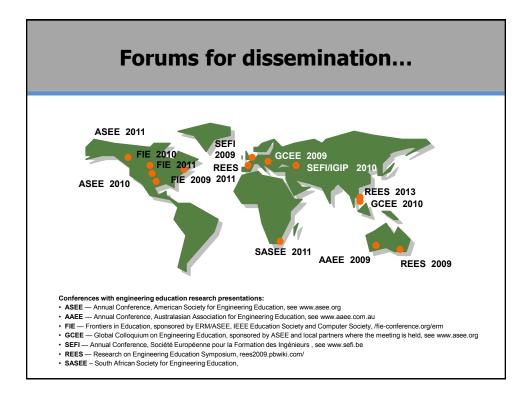
Creating a Better Culture

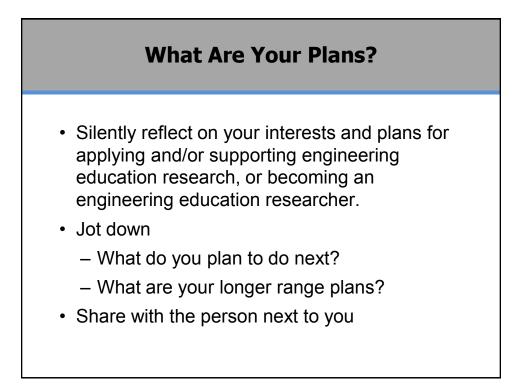
To measure progress in implementing policies, practices, and infrastructure in support of scholarly and systematic innovation in engineering education:


- 6. Conduct periodic self-assessments in our individual institutions.
- 7. Conduct periodic community-wide self-assessments.


https://www.asee.org/member-resources/reports/Innovation-with-Impact




1. a shift from hands-on and practical emphasis to engineering Five Major Shifts in 100 Years of Engineering Education science and analytical emphasis; The authors discuss what has reshaped, or is currently reshaping, engineering education over the past 100 years up until the current emphasis on design, learning, and social-behavioral sciences research and the role of technology. 2. a shift to outcomes-based ITREY E. FROYD, Fellow IEEE, PHILLIP C. WAN EAT, AND KARL A. SMITH education and accreditation; 3. a shift to emphasizing engineering design; 4. a shift to applying education, learning, and socialbehavioral sciences research; 5. a shift to integrating information, computational, and communications technology in education. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6185632



Becoming an Engineering Education Researcher—Adams, Fleming & Smith

- 1. Find and follow your dream.
- 2. Find and build community.
- 3. Do your homework. Become familiar with engineering education research.
- 4. Remember what it is like to be a student—be open to learning and the associated rewards and challenges.
- 5. Find balance. You will feel like you have multiple identities.
- 6. Be an architect of your own career.
- 7. Wear your researcher "lenses" at all times.
- 8. Use research as an opportunity for reflective practice.

Adams, R., L. Fleming, and K. Smith. 2007. Becoming an engineering education researcher: Three researchers stories and their intersections, extensions, and lessons. Proceedings, International Conference on Research in Engineering Education; http://www.ce.umn.edu/%7Esmith/docs/Adams-Fleming-Smith-Becoming_an_engineering_education_researcher-ICREE2007.pdf

Thank you!

An e-copy of this presentation will be posted to: http://personal.cege.umn.edu/~smith/links.html

Texas State University - San Marcos - June 7, 2017

Facilitated By

Karl A. Smith Purdue University and University of Minnesota Ruth A. Streveler Purdue University

streveler@purdue.edu

ksmith@umn.edu