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It is strange that we expect students
to learn, yet seldom teach them any-
thing about learning. We expect stu-
dents to solve problems, yet seldom
teach them anything about problem
solving. And, similarly, we some-
times require students to remember
a considerable body of material, yet
seldom teach them the art of mem-
ory. It is time we made up for this
lack....'

—D.A. Norman

EDUCATIONAL
ENGINEERING:

Heuristics for Improving

Learning Effectiveness

and Efﬁc1ency

ducational engineering is
based on recent develop-
ments in knowledge engineer-
ing and cognitive science, two cur-
rent topics in artificial intelligence.
What is the contribution of knowl-
edge engineering (and the broader
field of cognitive science) to improv-
ing learning efficiency and effective-
ness? And what are the implications
and importance of these consider-
ations for engineering education?
Peter Drucker coined the terms
efficiency (doing things right) and
effectiveness (doing the right thing)
in reference to business manage-
ment.? The terms apply as well to
learning efficiency (enhancing the
rate of learning) and learning effec-
tiveness (enhancing the mastery and
retention of facts, concepts, and rela-
tionships). Learning effectiveness
and efficiency can be enhanced by
providing students with strategies
that teach them how to learn. .

Learning How to Learn

The concept of learning how to
learn, first articulated by Bateson,’
was associated with the then new sci-
ence of cybernetics. Also called dou-
ble-loop learning, this form of learn-
ing involves changes in the governing
variables in contrast to single-loop
learning, which involves learning
new strategies to achieve existing
governing variables.*
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The process of learning how to
learn is commonly-referred to in the
cogmnitive science literature as
metalearning. The prefix meta here
means “going beyond,” “on a higher
level,” or “transcendent.” In a like
manner, metaknowledge refers to
the structuring of knowledge.
Metalearning and metaknowledge
are two different but interconnected
concepts that characterize human
understanding. Learning about the
nature and structuring of knowledge
helps students understand how they
learn and how humans construct new
knowledge. Novak and Gowin® de-
scribe specific strategies for helping
students learn about how knowledge
is structured and produced. Concept
maps (as shown in figure 1) are in-
tended to represent meaningful rela-
tionships between concepts in the
form of propositions. They are overt,
explicit representations of the con-
cepts and propositions a person
holds.

In discussing recent improvements
in learning efficiency and effective-
ness, I will follow the approach of
the engineering method, defined by
Koen® as “the use of heuristics to
cause the best change in a poorly
understood situation within the avail-
able resources.” Heuristics from cog-
nitive science that assist in making
the best change in students’ learning
effectiveness and efficiency will be
reviewed.



Knowledge Engineering

Some of the contributions of
knowledge engineering (and the
broader field of cognitive science) to
metalearning include models of the
learner, expert-novice differences,
acquisition of expertise, and knowl-
edge structure and representation.

Models of the Learner. Bruner®
outlined five models of the learner
that serve as a useful guide to the
contribution of cognitive science to
metalearning:

1) Tabula rasa (“one learns from
experience’) rests on the premise
that experience writes on the wax
tablet of the mind. According to this
model, the order in the mind reflects
the order that exists in the world.

2) Hpypothesis generator learner
models react against the passive, ta-
bula rasa models and propose that
the learner, rather than being a crea-
ture of experience, selects what en-
ters the mind.

3) Nativism theories share one
central concept: mind is inherently
or innately shaped by a set of under-
lying categories, hypotheses, and or-

ganizing experiences. Everything
hinges on opportunities to use and
exercise the innate powers of mind.

4) In constructivism the world is
not found, but made, and made ac-
cording to a set of structural rules
that are imposed experiences.

5) The recently developed novice-
to-expert view begins with the
premise that if you want to develop
learning strategies, find an expert
and examine him or her, then figure
out how a novice can become an ex-
pert. Computer simulations often are
used to identify algorithms and
heuristics that will allow a novice to
become an expert.

Bruner* offered his synthesis of
the general models we store in our
heads that guide our perception,
thought, and talk by saying that
“they appear to be diverse, rich, lo-
cal, extraordinarily generative.”
Bruner also discussed two modes of
thought, each providing distinctive
ways of ordering experience, of con-
structing reality. One mode, the par-
adigmatic or logico-scientific one, is
familiar to engineers and scientists.
The other, the narrative mode, deals

The Role of Heuristics

The word heuristic comes from a Greek word meaning “‘serving to
discover.” Heuristics have become very popular in the cognitive science
literature, and interest is growing once again in the problem-solving”?
and engineering-method® literature. The work of one of the most prolific
promoters of heuristics, George Polya,>!? is aimed explicitly at teaching
the young how to be better problem solvers." Heuristic is currently used
as an adjective in the sense of *‘guiding discovery” or “improving
problem solving.”

Although difficult to define, heuristics are relatively easy to identify
using the characteristics listed by Koen.® Their use does not guarantee a
solution; two heuristics may contradict or give different answers to the
same question and still be helpful. Heuristics help solve unsolvable
problems or reduce the time needed to find a satisfactory solution. The
heuristic depends on the immediate context instead of absolute truth as
a standard of validity.

Learning to use heuristic strategies is necessary but not sufficient to
ensure competent problem-solving performance. Schoenfeld asserts that
equivocal results have occurred because the complexity of heuristic
strategies, and the amount of knowledge needed to implement them,
have been underestimated.*® If the teaching of heuristics is to be effec-
tive, it must focus not only on the heuristics themselves but on when and
where to apply them.

in human or human-like intention
and action, and the vicissitudes and
consequences that mark their course.
Bruner claims that “great fiction,
like great mathematics, requires the
transformation of intuitions into ex-
pressions in a symbolic system—nat-
ural language or some artificialized
form of it.”*

Expert-Novice Differences. Enor-
mous differences of degree and type
have been observed in the approach
taken by experts, novices, and unin-
structed students in solving prob-
lems. Novices ask questions such as,
“What formula do I know that re-
lates what’s given with what I've
been asked to find?” They quickly
move to a calculation phase and sel-
dom reflect (at least overtly) on what
they are doing. Experts ask questions
such as, “What are the general prin-
ciples that apply?” They spend more
time thinking about the problem,
asking themselves questions, and
commenting on their understanding
of the problem. Schoenfeld” mapped
the mathematical problem-solving
activities of novices and experts on
numerous problems and noted these
major differences. Similar results
have been found for uninstructed
students, novices, and experts solv-
ing physics problems.’®

Modeling the problem-solving
methods of experts, and using these
models as instructional aids, is an
attractive approach, but it is compli-
cated by what experts are able to tell
about what they know. Furthermore,
although novice-to-expert models are
the principal ones followed by cogni-
tive science researchers, there are
many other learner models.

Acquisition of Expertise. Exper-
tise appears to be acquired in three
stages."” In the first phase, cognition
or thought, students learn from in-
struction or observation what knowl-
edge and actions are appropriate. In
the associative phase, students prac-
tice (with feedback) the relation-
ships discovered or taught in the first
phase until they become smooth (flu-
ent and efficient) and accurate (pro-
ficient). In the third phase, termed
automaticity, relationships are
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“compiled” continuously until they
do not require much thought on the
learner’s part.

Dreyfus and Dreyfus!®!? extended
and elaborated on these phases of
skill acquisition and proposed five
stages—novice, advanced beginner,
competent performer, proficient per-
former, and expert. The novice
knews basic facts about a subject
and context-independent rules for us-
ing those facts. The advanced begin-
ner can use examples to formulate
rules for action, taking context into
account. The competent performer is
personally involved, goal-oriented,
and able to reason analytically and
act without conscious thought about
the rules. The proficient performer
can recall whole situations and apply
them without having to break them
down into smaller components. The
expert makes little conscious use of
analytical reasoning, has little aware-
ness of the skill, is fully involved in
the situation, and seems to operate
by visualizing and manipulating
whole objects and situations.

Performance of tasks at the expert
level is usually smooth and profi-
cient; however, experts are generally
not consciously aware of the pro-
cesses they use. Michael Polanyi®
refers to this type of knowledge as
“tacit.” Paul Johnson ' has termed
this fact the “‘paradox of exper-
tise”—i.e., the very knowledge we
wish to represent in a computer pro-
gram, as well as the knowledge we
wish to teach others, often turns out
to be the knowledge we are least able
to talk about.

Knowledge Structure and Repre-
sentation. Research in cognitive sci-
ence has contributed to our under-
standing of knowledge structure,
representation, and construction. Re-
searchers in artificial intelligence
have experimented with knowledge
representation systems and inference
procedures. The modeling of learn-
ing, however, turned out to be much
more difficult than anyone in the Al
community expected. For example,
sequential readiness assumptions
may hold for some simple tasks and
for young children; however, adoles-
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cent and adult structures of knowl-
edge and individual differences are
often uneven and nonlinear.”

Constructing Knowledge
Bases

Outlines and notes are the main
methods that students use to orga-
nize knowledge externally. These ap-
proaches appear to serve their pur-
poses since the majority of student
learning involves rote memorization.
Meaningful learning, on the other
hand, requires more powerful repre-
sentation strategies. A concept map
{(a type of spatial learning strategy)
summarizing numerous forms of
knowledge representation is shown in
figure 1. Concept maps require
representation of relationships be-
tween concepts; they facilitate ab-
straction and deep processing. Un-
like more content-dependent
techniques (matrixing, flowcharting,
constructing pictures or graphs, for
example) these systems can be used
in a wide variety of contexts. Con-
cept maps are intended to represent
meaningful relationships between
concepts in the form of propositions.®
In its simplest form, a concept map
would be just two concepts con-
nected by a linking word to form a
proposition. Unlike outlines, concept
maps show key concepts and proposi-
tions explicitly and concisely, visu-

ally emphasizing both hierarchical
relationships between concepts and
propositions, and cross links between
sets of concepts and propositions.
How the process of constructing
knowledge bases (or representations)
assists students in learning how to
learn will be described later. Addi-
tional strategies for representing
knowledge have been described.®*

Expert Systems—
A Student Project

At the University of Minnesota we
involved our students in building
small expert systems by requiring
them to construct explicit knowledge
representations. Our primary pur-
pose was to familiarize them with
this approach in a course on the
application of operations research
techniques in engineering. There
were several unanticipated side ef-
fects. Not only were students much
more enthusiastic than we had ex-
pected, they mastered content that
we had not expected them to. They
formulated rules for design and deci-
sion making that showed they not
only had reviewed a great deal of
information, but had reviewed it se-
lectively and purposefully. The out-
come of this procedure is described
briefly below and in more detail else-
where.®

A small expert-system shell** has
been an indispensable part of the
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Figure 1. Concept map for constructing knowledge bases.




way we have used knowledge bases
as a teaching tool. The shell, written
in Pascal, runs on a personal com-
puter with 128K memory. The
knowledge bases constructed by the
students are stored in text files, ac-
cording to a simple and flexible for-
mat. These files are input data for
the shell, which will read, parse,
check, and interpret the text. The
shell then permits users to interact
with the knowledge base.

The knowledge base itself is di-
vided into three parts: 1) a set of
numbered decisions, 2) a series of
questions that solicit the information
necessary to select an appropriate
decision (associated with each ques-
tion is a limited number of answers),
and finally, 3) a set of production
rules. Each rule has the formation

IF <condition> THEN <decision>

where the condition is a Boolean ex-
pression relating to answers to the
questions and perhaps also to deci-
sions.

In a typical project students built
a knowledge base to select an urban
transportion system. The decisions in
that case consisted of a list of trans-
portation alternatives, such as

Decision 1 buses

Decision 2 light rail

The questions had to do with the
range of lane capacity nseded, the
maximum possible investment, the
speed required, the levels of accept-
able noise and pollution, and so on.
A typical question might be

Question 3: “What is the range of
lane capacity you need?”

Answer 1: “Between 15,000 and
20,000 spaces per hour.”

Answer 2: “Between 8,000 and
15,000.”

An example of a production rule
might be

IF (Q2 Ans3) and (not Dec4) and
(QS5 Ans] or Q6 Ans2) THEN Dec2.

In the interaction between a user
and the expert system shell, the shell
will ask questions, record and re-
member the user’s responses, and

systematically test the rules until it
finds a valid one. It will then print
out the appropriate decision. An im-
portant feature is that the user can
ask the shell “why?” at any stage.
The knowledge base may contain
reasons (text strings) associated with
each question and each rule. These
should explain briefly the reasoning
behind the questions and rules re-
spectively. When users ask “why?”
they are first given the reason associ-
ated with the current question. If
they ask “why?” again they are
given the reason associated with the
rule that the shell is currently test-
ing.

We have found the following se-
quence to be effective in the class-
room:

1) We first introduce the concept
of an expert system and knowledge
base, explain the structure of the
production rules, and demonstrate a
small system on the computer.

2) We divide the class into groups
of two’s or three’s and ask them to
suggest topics that would lend them-
selves to this kind of approach. The
ensuing discussion highlights the dif-
ferences between suitable topics and
unsuitable ones.

3) Each group then is required to
construct a knowledge base as a
homework assignment over a period
of one or two weeks. Students are
told to pay particular care to the
explanation facility and are required
to implement and demonstrate their
work, using the shell. This allows
faculty and fellow students a chance
to critique the assignments.

We have found that students
adapt quickly to this formal struc-
ture, learn to exploit it, and get a
solid sense of achievement when
they implement their work.

Databases and Spreadsheets. The
expert system described above is an
example of “build/run” software. It
enables students to construct a
knowledge base, operate on it, and
examine the results. Standard
database and spreadsheet programs
facilitate the same operations. Stu-
dents can compare, merge, and test
information in a database; a

BN
Students adapt quickly

to this formal structure,
learn to exploit it, and
get a solid sense of
achievement.

spreadsheet allows them to introduce
and simulate mathematical relation-
ships. A successful spreadsheet
application must be constructed
carefully of knowledge and rules
(i.e., values and formulas) so that
one might later observe the rippling
effect of column by column output
of the calculated values. Similarly, a
database must be constructed before
various sorting and merging func-
tions can be used. These programs
provide a means to represent and
manipulate knowledge.

Instructional Use of
Knowledge Representations

The strategies described above are
techniques for externalizing con-
cepts and propositions. However,
learning the meaning of a piece of
knowledge requires dialogue, ex-
change, sharing, and sometimes
compromise. When spatial learning
strategies are used in groups of two
or three students, such strategies can
serve a useful social function and
lead to lively classroom discussion.
Cooperative learning groups,?’ an
active Jearning technique, has shown
similar positive outcomes. Preparing
to teach or tutor another, whether or
not any teaching is actually done,
results in greater achievement and
appreciation of the subject and other
class members.2%? Cognitive psy-
chology researchers have shown that
talking with peers and preparing to
teach are the two principal contribu-
tions to the development of exper-
tise.?

The learner must actively analyze
the structure in order to construct a
spatial representation. In addition to
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training and encouraging students to
construct knowledge bases to assist
in learning, instructors could incor-
porate a variety of forms of
knowlege bases in their lectures or
handout materials. Lecture materi-
als can be modified to incorporate
some of these ideas. The construc-
tion of knowledge bases can be incor-
perated in evaluation procedures
with, for example, a scoring proce-
dure developed for concept mapping.
We have required students to build
the knowledge representation for ex-
pert systems in exams.

Many recognize microcomputers
as a revolution in education not to
supplant traditional educational pro-
cesses, but rather to supplement
them by allowing students to experi-
ment with many different situations
and to “instruct” the machine rather
than be “instructed.”??33 Programs
that enable one to modify data and
quickly recalculate are excellent
tools for sensitivity analysis and en-
courage a deeper understanding of
the behavior of the system being
studied. Once a knowledge represen-
tation is constructed, one is free to
operate on it with the tools of a par-
ticular package using a “what if”
approach.

Selection of Knowledge-
Representation Strategies

Metalearning requires a capability
for examining one’s own knowledge
and thoughts and then modifying
them accordingly. The ‘‘control
structure” that can accomplish this
modification is called metacognition
in the cognitive science literature.
Flavell’s generally accepted defini-

Problem formulation is
neglected in much of
engineering education. It
requires the capability to
learn how to learn.
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tion of metacognition is as follows:

Metacognition refers to one’s knowl-
edge concerning one’s own cognitive
processes and products or anything re-
lated to them, e.g., the learning-relevant
properties of information or data.
Metacognition refers, among other
things, to the active monitoring and con-
sequent regulation and orchestration of
these processes in relation to the cogni-
tive objects on which they bear, usually
in the service of some concrete goal or
objective.™

Metacognition has two separate
but related aspects: 1) knowledge
and beliefs about cognitive phenom-
ena, and 2) the regulation and con-
trol of cognitive actions.* Since sev-
eral strategies are available to each
learner, the student should be helped
to choose appropriate strategies for
each learning task. Bruner argues
against promoting only one model of
the learner and suggests instead that
the best approach is a reflective one
that allows one to “go meta.”s®

Implications for Engineering
Education

In real-world engineering practice,
problems do not present themselves
to the practitioner as givens. Prob-
lem formulation—the process by
which we define the decisions to be
made, the ends to be achieved, and
the alternative means that may be
chosen—is neglected in much of en-
gineering education. Problem for-
mulation requires the capability to
learn how to learn and to reflect-in-
action. According to Schon reflec-
tion-in-action exemplifies profes-
sional activity:

When someone reflects-in-action, he
becomes a researcher in the practice
context. . . . He does not separate think-
ing from doing, ratiocinating his way to
a decision which he must later convert
to action. Because his experimenting is
a kind of action, implementation is built
into his inquiry.*

In Educating the Reflective Prac-
titioner Schon describes his ap-
proach to the development of profes-
sional practice skills. He writes:

Designing, both in its narrower archi-
tectural sense and in the broader sense

in which all professional practice is
designlike, must be learned by doing.
... A designlike practice is learnable
but is not teachable by classroom meth-
ods. And when students are helped to
learn design, the interventions most use-
ful to them are more like coaching than
teaching—as in a reflective practicum.®

Meaningful learning and espe-
cially learning how to learn is en-
hanced by talking with peers and
preparing to teach others. A key to
learning how to learn, therefore, is to
get students involved in the construc-
tion of knowledge representations.
Schoenfeld acts as a roving consul-
tant while the class breaks into small
groups to work on mathematics prob-
lems. He has found that asking the
following three questions promote
the development of metacognitive
skills.?”

1) What (exactly) are you doing?
(Can you describe it precisely?)

2) Why are you doing it?
(How does it fit into the solution?)

3) How does it help you?
(What will you do with the outcome
when you obtain it?)

Conclusion

The development of higher cogni-
tive skills that enable students to be
independent learners and indepen-
dent, creative problem-solving users
of their knowledge is a very impor-
tant goal for educators. Providing
students with an active learning envi-
ronment where they can get involved
with the material to be learned in a
mutually supportive situation with
other people, and providing them
with tools such as the ones described
here, will contribute to meaningful
learning.

Even if learning, thinking, and
problem-solving strategies, whether
general or specific, are shown to ex-
ist, it might not be possible to teach
them directly. Perhaps they must
emerge spontaneously as a result of
experience. The current conception
is that metacognition—conscious
awareness and control of cognitive
processes—emerges only as knowl-
edge and skills in a particular do-



N
Meaningful learning is
enhanced by talking with
peers and preparing to
teach others.

main become quite well developed.
At the very least, 1t should be possi-
ble to select and design experiences
to result in a more rapid and com-
plete emergence of such skills. A key
to the success of developing stu-
dents’ skill at using these strategies
is for faculty to incorporate them in
their handouts, exercises, lectures,
assignments, and exams.
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