Problem-Based Cooperative Learning

Karl A. Smith

Engineering Education – Purdue University
Civil Engineering - University of Minnesota
ksmith@umn.edu
http://www.ce.umn.edu/~smith

Estimation Problem

First Course Design Experience UMN – Institute of Technology

- Thinking Like an Engineer
- Problem
 Identification
- Problem
 Formulation
- Problem
 Representation
- Problem Solving

Problem-Based Learning

Problem Based Cooperative Learning Format

TASK: Solve the problem(s) or Complete the project.

INDIVIDUAL: Estimate answer. Note strategy.

COOPERATIVE: One set of answers from the group, strive for agreement, make sure everyone is able to explain the strategies used to solve each problem.

EXPECTED CRITERIA FOR SUCCESS: Everyone must be able to explain the strategies used to solve each problem.

EVALUATION: Best answer within available resources or constraints.

INDIVIDUAL ACCOUNTABILITY: One member from your group may be randomly chosen to explain (a) the answer and (b) how to solve each problem.

EXPECTED BEHAVIORS: Active participating, checking, encouraging, and elaborating by all members.

INTERGROUP COOPERATION: Whenever it is helpful, check procedures, answers, and strategies with another group.

Team Member Roles

- Observer/ Process
 Recorder
- Task Recorder
- Skeptic/Prober

Technical Estimation Exercise

TASK:

INDIVIDUAL: Quick Estimate (10 seconds). Note strategy.

- COOPERATIVE: Improved Estimate (15 minutes). One set of answers from the group, strive for agreement, make sure everyone is able to explain the strategies used to arrive at the improved estimate.
- EXPECTED CRITERIA FOR SUCCESS: Everyone must be able to explain the strategies used to arrive at your improved estimate.
- EVALUATION: Best answer within available resources or constraints.
- INDIVIDUAL ACCOUNTABILITY: One member from your group may be randomly chosen to explain (a) your estimate and (b) how you arrived at it.
- EXPECTED BEHAVIORS: Active participating, checking, encouraging, and elaborating by all members.
- INTERGROUP COOPERATION: Whenever it is helpful, check procedures, answers, and strategies with another group.

Group Reports

- Estimate
 - Group 1
 - Group 2

— . . .

 Strategy used to arrive at estimate – assumptions, model, method, etc.

HOW

TO

MODEL

IT

PROBLEM

SOLVING

FOR

THE

COMPUTER

AGE

" 'How to Model It' . . . it is a serious attempt to teach modeling. . . . it's the best I've seen on the subject."

Jerry Pournelle, BYTE Magazine, March 1991 @ McGraw-Hill, Inc.

CONTENTS

- Introducing Models (and this book)
 A model of this book, showing how it differs from most books.
- 2 Time for Ping-Pong? How approach and solutions depend on resources.
- 3 Purging a Gas Storage Tank Using heuristics and tools such as spreadsheets.
- 4 The Case of the Hot and Thirsty Executive Interpreting results and presenting solutions.
- 5 Tennis, Anyone? Introduction to decision making under risk; probability and stochastic modeling.
- 6 Food for Thought The importance of organizing and representing information.
- 7 The Student's Dilemma: French, Calculus, Time, and Money A resource allocation problem. Introduction to optimization.
- 8 A Cab Control System Using models to explore system dynamics. Modeling and design.
- 9 The Case of the Dishonest Advertiser Developing and comparing strategies: exploring trade-offs.
- 10 The Librarian's Dilemma Qualitative knowledge models. Expert systems.

This active learning book has been used by high school students; in both undergraduate and graduate classes; in engineering, business, science and education as well as in professional development workshops.

Anthony M. Starfield Karl A. Smith Andrew L. Bleloch

Problem-Based Learning

Subject-Based Learning

Normative Professional Curriculum:

- 1. Teach the relevant basic science,
- 2. Teach the relevant applied science, and
- 3. Allow for a practicum to connect the science to actual practice.

Problem-Based Learning (PBL)

Problem-based learning is the learning that results from the process of working toward the understanding or resolution of a problem. The problem is encountered first in the learning process – Barrows and Tamlyn, 1980

Core Features of PBL

- Learning is student-centered
- Learning occurs in small student groups
- Teachers are facilitators or guides
- Problems are the organizing focus and stimulus for learning
- Problems are the vehicle for the development of clinical problemsolving skills
- New information is acquired through self-directed learning

Group Processing Plus/Delta Format

Cooperative Learning is instruction that involves people working in teams to accomplish a common goal, under conditions that involve both *positive interdependence* (all members must cooperate to complete the task) and *individual and group accountability* (each member is accountable for the complete final outcome).

Key Concepts

- Positive Interdependence
- Individual and Group Accountability
- Face-to-Face Promotive Interaction
- Teamwork Skills
- Group Processing

Modeling

Modeling in its broadest sense is the cost-effective use of something in place of something else for some cognitive purpose (Rothenberg, 1989). A model represents reality for the given purpose; the model is an abstraction of reality in the sense that it cannot represent all aspects of reality.

Any model is characterized by three essential attributes: (1) *Reference*: It is *of* something (its "*referent*"); (2) *Purpose*: It has an intended cognitive *purpose* with respect to its referent; (3) *Cost-effectiveness*: It is more *cost-effective* to use the model for this purpose than to use the referent itself.

Rothenberg, J. 1989. The nature of modeling. In L.E. Widman, K.A. Laparo & N.R. Nielson, Eds., *Artificial intelligence, simulation and modeling*. New York: Wiley

Modeling Heuristics

Ravindran, Phillips, and Solberg (1987):

- 1. Do not build a complicated model when a simple one will suffice.
- 2. Beware of molding the problem to fit the technique.
- 3. The deduction phase of modeling must be conducted rigorously.
- 4. Models should be validated prior to implementation.
- 5. A model should never be taken too literally.
- 6. A model should neither be pressed to do, nor criticized for failing to do, that for which it was never intended.
- 7. Beware of overselling a model.
- 8. Some of the primary benefits of modeling are associated with the process of developing the model.
- 9. A model cannot be any better than the information that goes into it.
- 10. Models cannot replace decision makers.

Modeling Resources

- D. Hestenes. 1987. Toward a modeling theory of physics instruction. Am. J. Phys. 55, 440–454.
- Anne-Marie Hoskinson, Brian A. Couch, Benjamin M. Zwickl, Kathleen A. Hinko, and Marcos D. Caballero. 2014. Bridging physics and biology teaching through modeling. *American Journal of Physics* 82, 434.
- Redish, E.F. and Smith K.A. 2008. Looking Beyond Content: Skill Development for Engineers. *Journal of Engineering Education* Special Issue,
- Smith, K.A., & Starfield, A.M. 1993. Building models to solve problems. In J.H. Clarke & A.W. Biddle, (Eds.), *Teaching critical thinking: Reports from across the curriculum*. Englewood Cliffs, NJ: Prentice-Hall, 254-263.
- Smith, K.A. 1993. Designing a first year engineering course. In Mark E. Schlesinger & Donald E. Mikkola (Eds.), Design Education in Metallurgical and Materials Engineering, Warrendale, PA: The Minerals, Metals, and Materials Society, 59-73.
- Smith, K.A., Wassyng, A. and Starfield, A.M. 1983. Development of a systematic problem solving course: An alternative to the use of case studies. In L.P. Grayson and J.M. Biedenbach (Eds.), *Proceedings Thirteenth Annual Frontiers in Education Conference*, Worcester, MA, Washington: IEEE/ASEE, 42-46
- Starfield, A.M., Smith, K.A., and Bleloch, A. 1994. How to model it:
 Problem solving for the computer age. Revised Edition software added.

 Edina: Interaction Book Company.